A média móvel como um filtro A média móvel é freqüentemente usada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, passagem alta e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por meio da média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros no Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo como o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel realiza uma convolução da sequência de entrada (xn) com um impulso retangular de comprimento (N) e altura (1N) (para tornar a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo parecido com o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência de voz que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído e, ao mesmo tempo, manter uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, as amostras de média (N) têm o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma maneira muito eficiente. Ele segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O fim, enquanto o termo (xn-N1N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação em ponto flutuante geralmente é mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicações de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora. Os dados de remoção removem a variação aleatória e mostram tendências e componentes cíclicos. Inércia na coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac somleft (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. Os (a esquerda (fratura direita)) são os pesos e, é claro, somam para 1. Resposta de frequência do Filtro Médico Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, A resposta de impulso de um L - A média móvel da amostra é uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright cópia 2000- - Universidade da Califórnia, Berkeley
No comments:
Post a Comment